Home » How To Build a Live Trading Bot with Python & the Binance API

How To Build a Live Trading Bot with Python & the Binance API

Estimated Reading Time: 5 min

Rate this post

Building a live trading bot with Python and the Binance API involves several steps. Below is a comprehensive guide to help you get started.


1. Prerequisites

a. Install Required Libraries

You’ll need Python 3.7+ and the following libraries:

pip install python-binance pandas numpy ta
  • python-binance: For interacting with the Binance API.
  • pandas and numpy: For data manipulation.
  • ta (Technical Analysis): For indicators like RSI, MACD, etc.

b. Binance API Key and Secret

  1. Log in to your Binance account.
  2. Go to the API Management page.
  3. Create an API key and secret (enable only necessary permissions, such as trading and account information).

2. Key Components of the Bot

  1. API Connection: Use python-binance to connect to the Binance exchange.
  2. Market Data Fetching: Retrieve live market data for analysis.
  3. Trading Strategy: Implement a strategy based on technical analysis or rules.
  4. Order Execution: Place buy/sell orders.
  5. Risk Management: Incorporate stop-loss, take-profit, and position sizing.

3. Example: Live Trading Bot

Here’s a script that demonstrates how to build a live trading bot:

from binance.client import Client
from binance.enums import *
import pandas as pd
import numpy as np
import time
from ta.momentum import RSIIndicator

# API credentials
API_KEY = 'your_api_key_here'
API_SECRET = 'your_api_secret_here'

# Initialize Binance client
client = Client(API_KEY, API_SECRET)

# Parameters
SYMBOL = 'BTCUSDT'
TRADE_QUANTITY = 0.001  # Amount to trade
RSI_PERIOD = 14  # RSI calculation period
RSI_OVERBOUGHT = 70
RSI_OVERSOLD = 30

def get_historical_data(symbol, interval, lookback):
    """Fetch historical klines (candlestick) data."""
    klines = client.get_klines(symbol=symbol, interval=interval, limit=lookback)
    data = pd.DataFrame(klines, columns=['time', 'open', 'high', 'low', 'close', 'volume', 
                                         'close_time', 'quote_asset_volume', 'trades', 
                                         'taker_buy_base', 'taker_buy_quote', 'ignore'])
    data['time'] = pd.to_datetime(data['time'], unit='ms')
    data['close'] = data['close'].astype(float)
    return data[['time', 'close']]

def calculate_rsi(data):
    """Calculate RSI using the ta library."""
    rsi = RSIIndicator(data['close'], RSI_PERIOD)
    data['rsi'] = rsi.rsi()
    return data

def place_order(symbol, side, quantity, order_type=ORDER_TYPE_MARKET):
    """Place a market order."""
    try:
        order = client.create_order(
            symbol=symbol,
            side=side,
            type=order_type,
            quantity=quantity
        )
        print(f"Order placed: {order}")
    except Exception as e:
        print(f"Error placing order: {e}")

def trading_strategy():
    """Main trading loop."""
    while True:
        try:
            # Fetch data
            data = get_historical_data(SYMBOL, Client.KLINE_INTERVAL_1MINUTE, RSI_PERIOD + 1)
            data = calculate_rsi(data)
            last_rsi = data['rsi'].iloc[-1]
            print(f"Latest RSI: {last_rsi}")

            # Trading logic
            if last_rsi < RSI_OVERSOLD:
                print("RSI below oversold threshold. Buying...")
                place_order(SYMBOL, SIDE_BUY, TRADE_QUANTITY)
            elif last_rsi > RSI_OVERBOUGHT:
                print("RSI above overbought threshold. Selling...")
                place_order(SYMBOL, SIDE_SELL, TRADE_QUANTITY)

            # Delay to avoid exceeding rate limits
            time.sleep(60)

        except Exception as e:
            print(f"Error: {e}")
            time.sleep(60)

if __name__ == "__main__":
    trading_strategy()


from binance.client import Client
from binance.enums import *
import pandas as pd
import numpy as np
import time
from ta.momentum import RSIIndicator

# API credentials
API_KEY = 'your_api_key_here'
API_SECRET = 'your_api_secret_here'

# Initialize Binance client
client = Client(API_KEY, API_SECRET)

# Parameters
SYMBOL = 'BTCUSDT'
TRADE_QUANTITY = 0.001  # Amount to trade
RSI_PERIOD = 14  # RSI calculation period
RSI_OVERBOUGHT = 70
RSI_OVERSOLD = 30

def get_historical_data(symbol, interval, lookback):
    """Fetch historical klines (candlestick) data."""
    klines = client.get_klines(symbol=symbol, interval=interval, limit=lookback)
    data = pd.DataFrame(klines, columns=['time', 'open', 'high', 'low', 'close', 'volume', 
                                         'close_time', 'quote_asset_volume', 'trades', 
                                         'taker_buy_base', 'taker_buy_quote', 'ignore'])
    data['time'] = pd.to_datetime(data['time'], unit='ms')
    data['close'] = data['close'].astype(float)
    return data[['time', 'close']]

def calculate_rsi(data):
    """Calculate RSI using the ta library."""
    rsi = RSIIndicator(data['close'], RSI_PERIOD)
    data['rsi'] = rsi.rsi()
    return data

def place_order(symbol, side, quantity, order_type=ORDER_TYPE_MARKET):
    """Place a market order."""
    try:
        order = client.create_order(
            symbol=symbol,
            side=side,
            type=order_type,
            quantity=quantity
        )
        print(f"Order placed: {order}")
    except Exception as e:
        print(f"Error placing order: {e}")

def trading_strategy():
    """Main trading loop."""
    while True:
        try:
            # Fetch data
            data = get_historical_data(SYMBOL, Client.KLINE_INTERVAL_1MINUTE, RSI_PERIOD + 1)
            data = calculate_rsi(data)
            last_rsi = data['rsi'].iloc[-1]
            print(f"Latest RSI: {last_rsi}")

            # Trading logic
            if last_rsi < RSI_OVERSOLD:
                print("RSI below oversold threshold. Buying...")
                place_order(SYMBOL, SIDE_BUY, TRADE_QUANTITY)
            elif last_rsi > RSI_OVERBOUGHT:
                print("RSI above overbought threshold. Selling...")
                place_order(SYMBOL, SIDE_SELL, TRADE_QUANTITY)

            # Delay to avoid exceeding rate limits
            time.sleep(60)

        except Exception as e:
            print(f"Error: {e}")
            time.sleep(60)

if __name__ == "__main__":
    trading_strategy()



  

4. Key Components Explained

a. Market Data Fetching

  • The get_historical_data function retrieves candlestick data (e.g., open, close prices) from Binance.

b. Technical Analysis

  • Uses the ta library to calculate the Relative Strength Index (RSI), a popular momentum oscillator.

c. Order Execution

  • The place_order function sends market orders to Binance.
  • Replace ORDER_TYPE_MARKET with ORDER_TYPE_LIMIT if you want to use limit orders.

d. Risk Management

  • Use stop-loss and take-profit levels based on your strategy.
  • Position sizing should align with your risk tolerance.

5. Next Steps: Enhancements

  1. Logging: Use Python’s logging module to record bot activity.
  2. Backtesting: Test your strategy on historical data before live trading.
  3. Advanced Strategies:
    • Incorporate more indicators like MACD, Bollinger Bands, etc.
    • Use AI/ML models for predictions.
  4. Error Handling:
    • Handle API rate limits and connection issues.
    • Implement retries and fail-safes.
  5. Deployment:
    • Run the bot on a cloud server (e.g., AWS, Google Cloud) for 24/7 operation.

6. Security Best Practices

  • Secure API Keys: Store keys in environment variables or a secure secrets manager.
  • IP Whitelisting: Restrict API access to specific IP addresses.
  • Read/Write Permissions: Enable only necessary permissions for the API key.

Would you like help with any specific part, such as backtesting, deploying on a server, or enhancing the trading strategy?


Discover more from Be-smart

Subscribe to get the latest posts sent to your email.

Photo of author

Flora

How To Build a Live Trading Bot with Python & the Binance API

Published

I am Flora, a www passionate dedicated to sharing insights and inspiration for living a fulfilling life. With a good background in www, I aim to empower others people to truly and genuinely acknowledge them when they do admirable things, big and small.

Leave a Reply